Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.962
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Biol Sci ; 20(7): 2607-2621, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725856

RESUMEN

Immunotherapy has shown great potential in cancer treatment. However, even with the intervention of techniques such as immune checkpoint inhibitor therapy, tumors can still achieve immune escape, leading to a low response rate. Abnormal glycosylation is a widely recognized hallmark of cancer. The development of a complex "glyco-code" on the surface of tumor cells can potentially influence the immune system's ability to monitor tumors and can impact the anti-tumor immune response. Therefore, abnormal glycosylation has emerged as a promising target for immunotherapy. Many recent studies have shown that targeted glycosylation can reshape the tumor microenvironment (TME) and promote the immune response, thereby improving the response to immunotherapy. This review summarizes how glycosylation affects anti-tumor immune function in the TME and synthesizes the latest research progress on targeted glycosylation in immunotherapy. It is hoped that by elucidating the basic laws and biological connotations of glycosylation, this review will enable researcher to thoroughly analyze the mechanism of its influence on the immune metabolic regulation network, which will provide a theoretical tool for promoting the clinical application of glycosylation codes.


Asunto(s)
Inmunoterapia , Neoplasias , Microambiente Tumoral , Glicosilación , Humanos , Inmunoterapia/métodos , Neoplasias/terapia , Neoplasias/inmunología , Neoplasias/metabolismo , Microambiente Tumoral/inmunología , Animales
2.
J Transl Med ; 22(1): 456, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745252

RESUMEN

BACKGROUND: Changes in plasma protein glycosylation are known to functionally affect proteins and to associate with liver diseases, including cirrhosis and hepatocellular carcinoma. Autoimmune hepatitis (AIH) is a liver disease characterized by liver inflammation and raised serum levels of IgG, and is difficult to distinguish from other liver diseases. The aim of this study was to examine plasma and IgG-specific N-glycosylation in AIH and compare it with healthy controls and other liver diseases. METHODS: In this cross-sectional cohort study, total plasma N-glycosylation and IgG Fc glycosylation analysis was performed by mass spectrometry for 66 AIH patients, 60 age- and sex-matched healthy controls, 31 primary biliary cholangitis patients, 10 primary sclerosing cholangitis patients, 30 non-alcoholic fatty liver disease patients and 74 patients with viral or alcoholic hepatitis. A total of 121 glycans were quantified per individual. Associations between glycosylation traits and AIH were investigated as compared to healthy controls and other liver diseases. RESULTS: Glycan traits bisection (OR: 3.78 [1.88-9.35], p-value: 5.88 × 10- 3), tetraantennary sialylation per galactose (A4GS) (OR: 2.88 [1.75-5.16], p-value: 1.63 × 10- 3), IgG1 galactosylation (OR: 0.35 [0.2-0.58], p-value: 3.47 × 10- 5) and hybrid type glycans (OR: 2.73 [1.67-4.89], p-value: 2.31 × 10- 3) were found as discriminators between AIH and healthy controls. High A4GS differentiated AIH from other liver diseases, while bisection associated with cirrhosis severity. CONCLUSIONS: Compared to other liver diseases, AIH shows distinctively high A4GS levels in plasma, with potential implications on glycoprotein function and clearance. Plasma-derived glycosylation has potential to be used as a diagnostic marker for AIH in the future. This may alleviate the need for a liver biopsy at diagnosis. Glycosidic changes should be investigated further in longitudinal studies and may be used for diagnostic and monitoring purposes in the future.


Asunto(s)
Hepatitis Autoinmune , Polisacáridos , Humanos , Hepatitis Autoinmune/sangre , Femenino , Masculino , Polisacáridos/sangre , Polisacáridos/metabolismo , Persona de Mediana Edad , Glicosilación , Estudios de Casos y Controles , Inmunoglobulina G/sangre , Hepatopatías/sangre , Adulto , Estudios Transversales , Anciano
3.
Nat Commun ; 15(1): 3792, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710711

RESUMEN

Infection with the apicomplexan protozoan Toxoplasma gondii can be life-threatening in immunocompromised hosts. Transmission frequently occurs through the oral ingestion of T. gondii bradyzoite cysts, which transition to tachyzoites, disseminate, and then form cysts containing bradyzoites in the central nervous system, resulting in latent infection. Encapsulation of bradyzoites by a cyst wall is critical for immune evasion, survival, and transmission. O-glycosylation of the protein CST1 by the mucin-type O-glycosyltransferase T. gondii (Txg) GalNAc-T3 influences cyst wall rigidity and stability. Here, we report X-ray crystal structures of TxgGalNAc-T3, revealing multiple features that are strictly conserved among its apicomplexan homologues. This includes a unique 2nd metal that is coupled to substrate binding and enzymatic activity in vitro and cyst wall O-glycosylation in T. gondii. The study illustrates the divergence of pathogenic protozoan GalNAc-Ts from their host homologues and lays the groundwork for studying apicomplexan GalNAc-Ts as therapeutic targets in disease.


Asunto(s)
Proteínas Protozoarias , Toxoplasma , Toxoplasma/enzimología , Toxoplasma/genética , Glicosilación , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/química , Humanos , Cristalografía por Rayos X , Glicosiltransferasas/metabolismo , Glicosiltransferasas/genética , Pared Celular/metabolismo , Animales
4.
Front Immunol ; 15: 1385654, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38711500

RESUMEN

Background: Autoinflammation with cytokine dysregulation may be implicated in the pathophysiology of adult-onset Still's disease (AOSD); however, the relationship between galectins and cytokines in patients with active AOSD remains unknown. We aimed to examine the relationship between circulating cytokines/chemokines and galectin-3 (Gal-3) or its ligand, Mac-2 binding protein glycosylation isomer (M2BPGi), in Japanese patients with AOSD. Methods: We recruited 44 consecutive patients diagnosed with AOSD according to the Yamaguchi criteria, 50 patients with rheumatoid arthritis (RA) as disease controls, and 27 healthy participants. Serum M2BPGi levels were directly measured using a HISCL M2BPGi reagent kit and an automatic immunoanalyzer (HISCL-5000). Serum Gal-3 concentrations were measured by enzyme-linked immunosorbent assay. The serum levels of 69 cytokines were analyzed in patients with AOSD using a multi-suspension cytokine array. We performed a cluster analysis of each cytokine expressed in patients with AOSD to identify specific molecular networks. Results: Significant increases in the serum concentrations of Gal-3 and M2BPGi were found in the serum of patients with AOSD compared with patients with RA and healthy participants (both p <0.001). There were significant positive correlations between serum Gal-3 levels and AOSD disease activity score (Pouchot score, r=0.66, p <0.001) and serum ferritin levels. However, no significant correlations were observed between serum M2BPGi levels and AOSD disease activity scores (Pouchot score, r = 0.32, p = 0.06) or serum ferritin levels. Furthermore, significant correlations were observed between the serum levels of Gal-3 and various inflammatory cytokines, including interleukin-18, in patients with AOSD. Immunosuppressive treatment in patients with AOSD significantly reduced serum Gal-3 and M2BPGi levels (p = 0.03 and 0.004, respectively). Conclusions: Although both Gal-3 and M2BPGi were elevated in patients with AOSD, only Gal-3 was a useful biomarker for predicting disease activity in AOSD. Our findings suggest that circulating Gal-3 reflects the inflammatory component of AOSD, which corresponds to proinflammatory cytokine induction through inflammasome activation cascades.


Asunto(s)
Biomarcadores , Proteínas Sanguíneas , Citocinas , Galectina 3 , Enfermedad de Still del Adulto , Humanos , Enfermedad de Still del Adulto/sangre , Enfermedad de Still del Adulto/diagnóstico , Enfermedad de Still del Adulto/inmunología , Masculino , Femenino , Persona de Mediana Edad , Adulto , Galectina 3/sangre , Citocinas/sangre , Biomarcadores/sangre , Glicosilación , Antígenos de Neoplasias/sangre , Glicoproteínas de Membrana/sangre , Anciano , Galectinas/sangre
5.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732103

RESUMEN

Fatty acid synthesis has been extensively investigated as a therapeutic target in cancers, including colorectal cancer (CRC). Fatty acid synthase (FASN), a key enzyme of de novo lipid synthesis, is significantly upregulated in CRC, and therapeutic approaches of targeting this enzyme are currently being tested in multiple clinical trials. However, the mechanisms behind the pro-oncogenic action of FASN are still not completely understood. Here, for the first time, we show that overexpression of FASN increases the expression of glutamine-fructose-6-phosphate transaminase 1 (GFPT1) and O-linked N-acetylglucosamine transferase (OGT), enzymes involved in hexosamine metabolism, and the level of O-GlcNAcylation in vitro and in vivo. Consistently, expression of FASN significantly correlates with expression of GFPT1 and OGT in human CRC tissues. shRNA-mediated downregulation of GFPT1 and OGT inhibits cellular proliferation and the level of protein O-GlcNAcylation in vitro, and knockdown of GFPT1 leads to a significant decrease in tumor growth and metastasis in vivo. Pharmacological inhibition of GFPT1 and OGT leads to significant inhibition of cellular proliferation and colony formation in CRC cells. In summary, our results show that overexpression of FASN increases the expression of GFPT1 and OGT as well as the level of protein O-GlcNAcylation to promote progression of CRC; targeting the hexosamine biosynthesis pathway could be a therapeutic approach for this disease.


Asunto(s)
Proliferación Celular , Neoplasias Colorrectales , Glutamina-Fructosa-6-Fosfato Transaminasa (Isomerizadora) , N-Acetilglucosaminiltransferasas , Humanos , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/genética , Glutamina-Fructosa-6-Fosfato Transaminasa (Isomerizadora)/metabolismo , Glutamina-Fructosa-6-Fosfato Transaminasa (Isomerizadora)/genética , N-Acetilglucosaminiltransferasas/metabolismo , N-Acetilglucosaminiltransferasas/genética , Glicosilación , Animales , Ratones , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Regulación hacia Arriba , Ratones Desnudos , Acido Graso Sintasa Tipo I
6.
Front Immunol ; 15: 1385691, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38605955

RESUMEN

Mesenchymal stem/stromal cells (MSCs) are being increasingly used in cell-based therapies due to their broad anti-inflammatory and immunomodulatory properties. Intravascularly-administered MSCs do not efficiently migrate to sites of inflammation/immunopathology, but this shortfall has been overcome by cell surface enzymatic fucosylation to engender expression of the potent E-selectin ligand HCELL. In applications of cell-based therapies, cryopreservation enables stability in both storage and transport of the produced cells from the manufacturing facility to the point of care. However, it has been reported that cryopreservation and thawing dampens their immunomodulatory/anti-inflammatory activity even after a reactivation/reconditioning step. To address this issue, we employed a variety of methods to cryopreserve and thaw fucosylated human MSCs derived from either bone marrow or adipose tissue sources. We then evaluated their immunosuppressive properties, cell viability, morphology, proliferation kinetics, immunophenotype, senescence, and osteogenic and adipogenic differentiation. Our studies provide new insights into the immunobiology of cryopreserved and thawed MSCs and offer a readily applicable approach to optimize the use of fucosylated human allogeneic MSCs as immunomodulatory/anti-inflammatory therapeutics.


Asunto(s)
Inmunomodulación , Células Madre Mesenquimatosas , Humanos , Glicosilación , Células Madre Mesenquimatosas/metabolismo , Criopreservación/métodos , Antiinflamatorios/metabolismo
7.
Mol Biol Rep ; 51(1): 546, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38642246

RESUMEN

Breast cancer is a leading cause of mortality and the most prevalent form of malignant tumor among women worldwide. Breast cancer cells exhibit an elevated glycolysis and altered glucose metabolism. Moreover, these cells display abnormal glycosylation patterns, influencing invasion, proliferation, metastasis, and drug resistance. Consequently, targeting glycolysis and mitigating abnormal glycosylation represent key therapeutic strategies for breast cancer. This review underscores the importance of protein glycosylation and glucose metabolism alterations in breast cancer. The current research efforts in developing effective interventions targeting glycolysis and glycosylation are further discussed.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/metabolismo , Glicosilación , Glucólisis , Glucosa/metabolismo , Línea Celular Tumoral , Proliferación Celular
8.
Int J Mol Sci ; 25(8)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38674051

RESUMEN

The spike protein receptor-binding domain (RBD) of SARS-CoV-2 is required for the infection of human cells. It is the main target that elicits neutralizing antibodies and also a major component of diagnostic kits. The large demand for this protein has led to the use of plants as a production platform. However, it is necessary to determine the N-glycan structures of an RBD to investigate its efficacy and functionality as a vaccine candidate or diagnostic reagent. Here, we analyzed the N-glycan profile of the RBD produced in rice callus. Of the two potential N-glycan acceptor sites, we found that one was not utilized and the other contained a mixture of complex-type N-glycans. This differs from the heterogeneous mixture of N-glycans found when an RBD is expressed in other hosts, including Nicotiana benthamiana. By comparing the glycosylation profiles of different hosts, we can select platforms that produce RBDs with the most beneficial N-glycan structures for different applications.


Asunto(s)
Oryza , Polisacáridos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Oryza/metabolismo , Oryza/genética , Oryza/virología , Polisacáridos/metabolismo , Glicosilación , Humanos , SARS-CoV-2/metabolismo , Dominios Proteicos , Unión Proteica , Plantas Modificadas Genéticamente/metabolismo , COVID-19/virología , COVID-19/metabolismo
9.
Glycobiology ; 34(6)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38579012

RESUMEN

Biological experiments are often conducted in vitro using immortalized cells due to their accessibility and ease of propagation compared to primary cells and live animals. However, immortalized cells may present different proteomic and glycoproteomic characteristics from the primary cell source due to the introduction of genes that enhance proliferation (e.g. CDK4) or enable telomere lengthening. To demonstrate the changes in phenotype upon CDK4-transformation, we performed LC-MS/MS glycomic and proteomic characterizations of a human lung cancer primary cell line (DTW75) and a CDK4-transformed cell line (GL01) derived from DTW75. We observed that the primary and CDK4-transformed cells expressed significantly different levels of sialylated, fucosylated, and sialofucosylated N-glycans. Specifically, the primary cells expressed higher levels of hybrid- and complex-type sialylated N-glycans, while CDK4-transformed cells expressed higher levels of complex-type fucosylated and sialofucosylated N-glycans. Further, we compared the proteomic differences between the cell lines and found that CDK4-transformed cells expressed higher levels of RNA-binding and adhesion proteins. Further, we observed that the CDK4-transformed cells changed N-glycosylation after 31 days in cell culture, with a decrease in high-mannose and increase in fucosylated, sialylated, and sialofucosylated N-glycans. Identifying these changes between primary and CDK4-transformed cells will provide useful insight when adapting cell lines that more closely resemble in vivo physiological conditions.


Asunto(s)
Quinasa 4 Dependiente de la Ciclina , Neoplasias Pulmonares , Polisacáridos , Proteoma , Humanos , Quinasa 4 Dependiente de la Ciclina/metabolismo , Quinasa 4 Dependiente de la Ciclina/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Proteoma/metabolismo , Proteoma/análisis , Polisacáridos/metabolismo , Línea Celular Tumoral , Glicosilación , Glicómica , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/genética
10.
Br J Cancer ; 130(10): 1716-1724, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38658783

RESUMEN

BACKGROUND: There is a need for diagnostic tests for screening, triaging and staging of epithelial ovarian cancer (EOC). Glycoproteomics of blood samples has shown promise for biomarker discovery. METHODS: We applied glycoproteomics to serum of people with EOC or benign pelvic masses and healthy controls. A total of 653 analytes were quantified and assessed in multivariable models, which were tested in an independent cohort. Additionally, we analyzed glycosylation patterns in serum markers and in tissues. RESULTS: We identified a biomarker panel that distinguished benign lesions from EOC with sensitivity and specificity of 83.5% and 90.1% in the training set, and of 86.7 and 86.7% in the test set, respectively. ROC analysis demonstrated strong performance across a range of cutoffs. Fucosylated multi-antennary glycopeptide markers were higher in late-stage than in early-stage EOC. A comparable pattern was found in late-stage EOC tissues. CONCLUSIONS: Blood glycopeptide biomarkers have the potential to distinguish benign from malignant pelvic masses, and early- from late-stage EOC. Glycosylation of circulating and tumor tissue proteins may be related. This study supports the hypothesis that blood glycoproteomic profiling can be used for EOC diagnosis and staging and it warrants further clinical evaluation.


Asunto(s)
Biomarcadores de Tumor , Carcinoma Epitelial de Ovario , Estadificación de Neoplasias , Neoplasias Ováricas , Proteómica , Humanos , Femenino , Neoplasias Ováricas/sangre , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/patología , Carcinoma Epitelial de Ovario/sangre , Carcinoma Epitelial de Ovario/diagnóstico , Carcinoma Epitelial de Ovario/patología , Biomarcadores de Tumor/sangre , Proteómica/métodos , Persona de Mediana Edad , Anciano , Glicosilación , Adulto , Glicopéptidos/sangre , Neoplasias Glandulares y Epiteliales/sangre , Neoplasias Glandulares y Epiteliales/diagnóstico , Neoplasias Glandulares y Epiteliales/patología , Glicoproteínas/sangre , Estudios de Casos y Controles , Sensibilidad y Especificidad
11.
Sci Adv ; 10(15): eadn1305, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38608021

RESUMEN

The structural identification and efficient synthesis of bioactive 2,6-dideoxyglycosides are daunting challenges. Here, we report the total synthesis and structural revision of a series of 2,6-dideoxyglycosides from folk medicinal plants Ecdysanthera rosea and Chonemorpha megacalyx, which feature pregnane steroidal aglycones bearing an 18,20-lactone and glycans consisting of 2,6-dideoxy-3-O-methyl-ß-pyranose residues, including ecdysosides A, B, and F and ecdysantheroside A. All the eight possible 2,6-dideoxy-3-O-methyl-ß-pyranoside stereoisomers (of the proposed ecdysantheroside A) have been synthesized that testify the effective gold(I)-catalyzed glycosylation methods for the synthesis of various 2-deoxy-ß-pyranosidic linkages and lays a foundation via nuclear magnetic resonance data mapping to identify these sugar units which occur promiscuously in the present and other natural glycosides. Moreover, some synthetic natural compounds and their isomers have shown promising anticancer, immunosuppressive, anti-inflammatory, and anti-Zika virus activities.


Asunto(s)
Oro , Imagen por Resonancia Magnética , Glicosilación , Tecnología , Espectroscopía de Resonancia Magnética
12.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38612379

RESUMEN

Glycosylation plays a crucial role in the maintenance of homeostasis in the body and at the onset of diseases such as inflammation, neurodegeneration, infection, diabetes, and cancer. It is also involved in bone metabolism. N- and O-glycans have been shown to regulate osteoblast and osteoclast differentiation. We recently demonstrated that ganglio-series and globo-series glycosphingolipids were essential for regulating the proliferation and differentiation of osteoblasts and osteoclasts in glycosyltransferase-knockout mice. Herein, we reviewed the importance of the regulation of bone metabolism by glycoconjugates, such as glycolipids and glycoproteins, including our recent results.


Asunto(s)
Glucolípidos , Glicosiltransferasas , Animales , Ratones , Glicosilación , Homeostasis , Inflamación , Ratones Noqueados
13.
Glycobiology ; 34(6)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38590172

RESUMEN

Human noroviruses, globally the main cause of viral gastroenteritis, show strain specific affinity for histo-blood group antigens (HBGA) and can successfully be propagated ex vivo in human intestinal enteroids (HIEs). HIEs established from jejunal stem cells of individuals with different ABO, Lewis and secretor geno- and phenotypes, show varying susceptibility to such infections. Using bottom-up glycoproteomic approaches we have defined and compared the N-linked glycans of glycoproteins of seven jejunal HIEs. Membrane proteins were extracted, trypsin digested, and glycopeptides enriched by hydrophilic interaction liquid chromatography and analyzed by nanoLC-MS/MS. The Byonic software was used for glycopeptide identification followed by hands-on verifications and interpretations. Glycan structures and attachment sites were identified from MS2 spectra obtained by higher-energy collision dissociation through analysis of diagnostic saccharide oxonium ions (B-ions), stepwise glycosidic fragmentation of the glycans (Y-ions), and peptide sequence ions (b- and y-ions). Altogether 694 unique glycopeptides from 93 glycoproteins were identified. The N-glycans encompassed pauci- and oligomannose, hybrid- and complex-type structures. Notably, polyfucosylated HBGA-containing glycopeptides of the four glycoproteins tetraspanin-8, carcinoembryonic antigen-related cell adhesion molecule 5, sucrose-isomaltase and aminopeptidase N were especially prominent and were characterized in detail and related to donor ABO, Lewis and secretor types of each HIE. Virtually no sialylated N-glycans were identified for these glycoproteins suggesting that terminal sialylation was infrequent compared to fucosylation and HBGA biosynthesis. This approach gives unique site-specific information on the structural complexity of N-linked glycans of glycoproteins of human HIEs and provides a platform for future studies on the role of host glycoproteins in gastrointestinal infectious diseases.


Asunto(s)
Glicoproteínas , Humanos , Glicoproteínas/metabolismo , Glicoproteínas/química , Proteómica/métodos , Antígenos de Grupos Sanguíneos/metabolismo , Antígenos de Grupos Sanguíneos/química , Polisacáridos/química , Polisacáridos/metabolismo , Fucosa/metabolismo , Fucosa/química , Fenotipo , Glicosilación , Sistema del Grupo Sanguíneo ABO/metabolismo , Sistema del Grupo Sanguíneo ABO/química
14.
Cell Rep Methods ; 4(4): 100744, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38582075

RESUMEN

A comprehensive analysis of site-specific protein O-glycosylation is hindered by the absence of a consensus O-glycosylation motif, the diversity of O-glycan structures, and the lack of a universal enzyme that cleaves attached O-glycans. Here, we report the development of a robust O-glycoproteomic workflow for analyzing complex biological samples by combining four different strategies: removal of N-glycans, complementary digestion using O-glycoprotease (IMPa) with/without another protease, glycopeptide enrichment, and mass spectrometry with fragmentation of glycopeptides using stepped collision energy. Using this workflow, we cataloged 474 O-glycopeptides on 189 O-glycosites derived from 79 O-glycoproteins from human plasma. These data revealed O-glycosylation of several abundant proteins that have not been previously reported. Because many of the proteins that contained unannotated O-glycosylation sites have been extensively studied, we wished to confirm glycosylation at these sites in a targeted fashion. Thus, we analyzed selected purified proteins (kininogen-1, fetuin-A, fibrinogen, apolipoprotein E, and plasminogen) in independent experiments and validated the previously unknown O-glycosites.


Asunto(s)
Glicoproteínas , Proteoma , Proteómica , Flujo de Trabajo , Humanos , Glicosilación , Glicoproteínas/metabolismo , Glicoproteínas/química , Proteómica/métodos , Proteoma/metabolismo , Proteoma/análisis , Glicopéptidos/análisis , Glicopéptidos/química , Glicopéptidos/metabolismo , Quininógenos/metabolismo , Quininógenos/química , Polisacáridos/metabolismo , Apolipoproteínas E/metabolismo , Apolipoproteínas E/química , Fibrinógeno/metabolismo , Fibrinógeno/química , alfa-2-Glicoproteína-HS/metabolismo , alfa-2-Glicoproteína-HS/análisis
15.
Ren Fail ; 46(1): 2338931, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38622929

RESUMEN

BACKGROUND: IgA nephropathy (IgAN) is the most common primary glomerulonephritis worldwide. Proliferation-inducing ligand (APRIL) was identified as an important cause of glycosylation deficiency of IgA1 (Gd-IgA1), which can 'trigger' IgAN. Our previous study indicated that high migration group protein B2 (HMGB2) in peripheral blood mononuclear cells from patients with IgAN was associated with disease severity, but the underlying mechanism remains unclear. MATERIALS AND METHODS: The location of HMGB2 was identified by immunofluorescence. qRT-PCR and Western blotting were used to measure HMGB2, HMGA1, and APRIL expression. Gd-IgA1 levels were detected by enzyme-linked immunosorbent assay (ELISA). In addition, we used DNA pull-down, protein profiling, and transcription factor prediction software to identify proteins bound to the promoter region of the APRIL gene. RNA interference and coimmunoprecipitation (Co-IP) were used to verify the relationships among HMGB2, high mobility group AT-hook protein 1 (HMGA1), and APRIL. RESULTS: HMGB2 expression was greater in IgAN patients than in HCs and was positively associated with APRIL expression in B cells. DNA pull-down and protein profiling revealed that HMGB2 and HMGA1 bound to the promoter region of the APRIL gene. The expression levels of HMGA1, APRIL, and Gd-IgA1 were downregulated after HMGB2 knockdown. Co-IP indicated that HMGB2 binds to HMGA1. The Gd-IgA1 concentration in the supernatant was reduced after HMGA1 knockdown. HMGA1 binding sites were predicted in the promoter region of the APRIL gene. CONCLUSION: HMGB2 expression is greater in IgAN patients than in healthy controls; it promotes APRIL expression by interacting with HMGA1, thereby inducing Gd-IgA1 overexpression and leading to IgAN.


Asunto(s)
Glomerulonefritis por IGA , Humanos , ADN/metabolismo , Glicosilación , Proteína HMGA1a/metabolismo , Proteína HMGB2/genética , Proteína HMGB2/metabolismo , Inmunoglobulina A , Leucocitos Mononucleares/metabolismo , Factores de Transcripción/metabolismo , Miembro 13 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral
16.
Glycobiology ; 34(6)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38591797

RESUMEN

AIM: Alpha-1-acid glycoprotein (AGP) is a highly glycosylated protein in human plasma and one of the most abundant acute phase proteins in humans. Glycosylation plays a crucial role in its biological functions, and alterations in AGP N-glycome have been associated with various diseases and inflammatory conditions. However, large-scale studies of AGP N-glycosylation in the general population are lacking. METHODS: Using recently developed high-throughput glycoproteomic workflow for site-specific AGP N-glycosylation analysis, 803 individuals from the Croatian island of Korcula were analyzed and their AGP N-glycome data associated with biochemical and physiological traits, as well as different environmental factors. RESULTS: After regression analysis, we found that AGP N-glycosylation is strongly associated with sex, somewhat less with age, along with multiple biochemical and physiological traits (e.g. BMI, triglycerides, uric acid, glucose, smoking status, fibrinogen). CONCLUSION: For the first time we have extensively explored the inter-individual variability of AGP N-glycome in a general human population, demonstrating its changes with sex, age, biochemical, and physiological status of individuals, providing the baseline for future population and clinical studies.


Asunto(s)
Orosomucoide , Población Blanca , Humanos , Orosomucoide/metabolismo , Masculino , Femenino , Glicosilación , Persona de Mediana Edad , Adulto , Anciano , Croacia
17.
BMC Cancer ; 24(1): 443, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600440

RESUMEN

BACKGROUND: Altered glycosylation is a hallmark of cancer associated with therapy resistance and tumor behavior. In this study, we investigated the glycosylation profile of stemness-related proteins OCT4, CIP2A, MET, and LIMA1 in HNSCC tumors. METHODS: Tumor, adjacent normal tissue, and blood samples of 25 patients were collected together with clinical details. After tissue processing, lectin-based glycovariant screens were performed. RESULTS: Strong correlation between glycosylation profiles of all four stemness-related proteins was observed in tumor tissue, whereas glycosylation in tumor tissue, adjacent normal tissue, and serum was differential. CONCLUSIONS: A mannose- and galactose-rich glycosylation niche associated with stemness-related proteins was identified.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello , Carcinoma de Células Escamosas/patología , Glicosilación , Línea Celular Tumoral , Proteínas del Citoesqueleto/metabolismo
18.
Biochem Biophys Res Commun ; 710: 149541, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38608490

RESUMEN

For acute promyelocytic leukemia (APL), differentiation therapy with all-trans retinoic acid (ATRA) is well established. However, the narrow application and tolerance development of ATRA remain to be improved. In this study, we investigated the effects of combinations of glycosylation inhibitors with ATRA to achieve better efficiency than ATRA alone. We found that the combination of fucosylation inhibitor 6-alkynylfucose (6AF) and ATRA had an additional effect on cell differentiation, as revealed by expression changes in two differentiation markers, CD11b and CD11c, and significant morphological changes in NB4 APL and HL-60 acute myeloid leukemia (AML) cells. In AAL lectin blot analyses, ATRA or 6AF alone could decrease fucosylation, while their combination decreased fucosylation more efficiently. To clarify the molecular mechanism for the 6AF effect on ATRA-induced differentiation, we performed microarray analyses using NB4 cells. In a pathway analysis using DAVID software, we found that the C-type lectin receptor (CLR) signaling pathway was enriched with high significance. In real-time PCR analyses using NB4 and HL-60 cells, FcεRIγ, CLEC6A, CLEC7A, CASP1, IL-1ß, and EGR3, as components of the CLR pathway, as well as CD45 and AKT3 were upregulated by 6AF in ATRA-induced differentiation. Taken together, the present findings suggest that the CLR signaling pathway is involved in the 6AF effect on ATRA-induced differentiation.


Asunto(s)
Leucemia Promielocítica Aguda , Humanos , Leucemia Promielocítica Aguda/tratamiento farmacológico , Leucemia Promielocítica Aguda/metabolismo , Glicosilación , Tretinoina/farmacología , Tretinoina/metabolismo , Diferenciación Celular , Células HL-60 , Línea Celular Tumoral
19.
Front Immunol ; 15: 1364082, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38562924

RESUMEN

Background: It has been well established that glycosylation plays a pivotal role in initiation, progression, and therapy resistance of several cancers. However, the correlations between glycosylation and head and neck squamous cell carcinoma (HNSCC) have not been elucidated in detail. Methods: The paramount genes governing glycosylation were discerned via the utilization of the Protein-Protein Interaction (PPI) network and correlation analysis, coupled with single-cell RNA sequencing (scRNA-seq) analysis. To construct risk models exhibiting heightened predictive efficacy, cox- and lasso-regression methodologies were employed, and the veracity of these models was substantiated across both internal and external datasets. Subsequently, an exploration into the distinctions within the tumor microenvironment (TME), immunotherapy responses, and enriched pathways among disparate risk cohorts ensued. Ultimately, cell experiments were conducted to validate the consequential impact of SMS in Head and Neck Squamous Cell Carcinoma (HNSCC). Results: A total of 184 genes orchestrating glycosylation were delineated for subsequent scrutiny. Employing cox- and lasso-regression methodologies, we fashioned a 3-gene signature, proficient in prognosticating the outcomes for patients afflicted with HNSCC. Noteworthy observations encompassed distinctions in the Tumor Microenvironment (TME), levels of immune cell infiltration, and the presence of immune checkpoint markers among divergent risk cohorts, holding potentially consequential implications for the clinical management of HNSCC patients. Conclusion: The prognosis of HNSCC can be proficiently anticipated through risk signatures based on Glycosylation-related genes (GRGs). A thorough delineation of the GRGs signature in HNSCC holds the potential to facilitate the interpretation of HNSCC's responsiveness to immunotherapy and provide innovative strategies for cancer treatment.


Asunto(s)
Neoplasias de Cabeza y Cuello , Inmunoterapia , Humanos , Pronóstico , Glicosilación , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/terapia , Medición de Riesgo , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/terapia , Microambiente Tumoral/genética
20.
Carbohydr Res ; 538: 109094, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38564900

RESUMEN

Human diseases often correlate with changes in protein glycosylation, which can be observed in serum or plasma samples. N-glycosylation, the most common form, can provide potential biomarkers for disease prognosis and diagnosis. However, glycoproteins constitute a relatively small proportion of the total proteins in human serum and plasma compared to the non-glycosylated protein albumin, which constitutes the majority. The detection of microheterogeneity and low glycan abundance presents a challenge. Mass spectrometry facilitates glycoproteomics research, yet it faces challenges due to interference from abundant plasma proteins. Therefore, methods have emerged to enrich N-glycans and N-linked glycopeptides using glycan affinity, chemical properties, stationary phase chemical coupling, bioorthogonal techniques, and other alternatives. This review focuses on N-glycans and N-glycopeptides enrichment in human serum or plasma, emphasizing methods and applications. Although not exhaustive, it aims to elucidate principles and showcase the utility and limitations of glycoproteome characterization.


Asunto(s)
Glicopéptidos , Glicoproteínas , Humanos , Glicopéptidos/química , Glicoproteínas/química , Glicosilación , Espectrometría de Masas/métodos , Polisacáridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA